Путь SpaceX к дозаправке Starship в космосе яснее, чем кажется

Возможно, самая большая загадка программы SpaceX Starship заключается в том, как именно компания планирует заправлять самый большой из когда-либо построенных космических кораблей после его выхода на орбиту.
Starship (ракета следующего поколения от SpaceX), впервые представленная в сентябре 2016 года как Межпланетная транспортная система (ITS), за последние пять лет несколько раз радикально модернизировалась. Тем не менее, некоторые важные аспекты сохранились. Пять лет спустя Starship по-прежнему представляет собой двухступенчатую ракету с двигателями Raptor, которые сжигают смесь жидкого метана (CH4) и жидкого кислорода (O2). Несмотря на то, что в сравнении с ITS носитель был значительно урезан, он будет примерно такой же высоты (120 метров) и все ещё находится на пути к тому, чтобы стать (с большим отрывом) самой высокой, самой тяжёлой и самой мощной из когда-либо запущенных ракет.
Основываясь на многолетнем опыте, накопленном после десятков запусков Falcon 9 и Falcon Heavy, наиболее важной фундаментальной целью конструкции Starship является возможность полного и быстрого многократного использования. То есть единственным, что будет намеренно расходоваться в ходе запусков этого носителя, должно быть только топливо. Однако, как и у предыдущих итераций проекта, глобальная цель Starship состоит в том, чтобы поддержать основную цель SpaceX – сделать человечество мультипланетарным видом и построить самодостаточный город на Марсе. Чтобы у Starship был хотя бы один шанс совершить этот грандиозный подвиг, SpaceX нужно будет не только построить самую простую и часто используемую многоразовую ракету и космический корабль в истории, но и освоить орбитальную дозаправку.
Уравнение повторного использования / дозаправки
В контексте целей SpaceX по экспансии человечества на Марс, овладение возможностью многократного использования и орбитальная дозаправка являются одинаково необходимыми. Без наличия этих двух условий невозможно создать устойчивый город на Марсе. Система запуска Starship, которую можно полностью повторно использовать еженедельно или даже ежедневно, но которую нельзя быстро и легко заправлять в космосе, просто не будет обладать производительностью, необходимой для экономичного строительства, снабжения и заселения города на другой планете (или Луне). Система запуска Starship, которая может быть легко дозаправлена, но не будет полностью многоразовой и быстро обслуживаемой, может лишь в некоторой степени стать межпланетным транспортом и позволит создать небольшое поселение людей на Марсе. Но этот вариант, вероятно, будет намного сложнее, рискованнее и дороже в эксплуатации и с самого начала потребует огромного флота кораблей и ускорителей.
Вопрос о том, как SpaceX превратит Starship в самую быстрообслуживаемую, дешёвую полностью многоразовую ракету в мире является сложным. Но развитие Starship не так уж и сложно экстраполировать, исходя из того, где компания находится сегодня. В настоящее время рекорд переиспользования (время между двумя полётами) для ускорителей Falcon составляет два запуска менее чем за четыре недели (27 дней). Повторное использование орбитального корабля SpaceX также набирает обороты, и недавно компания дважды направляла в космос одну и ту же орбитальную капсулу Crew Dragon всего за 137 дней (менее пяти месяцев), что приближается к среднему показателю другого многоразового орбитального космического корабля – Space Shuttle.

Изображение: NASA / Майк Хопкинс / ЕКА / Тома Песке

Фото: SpaceX
Хотя Dragon 2 и Falcon 9 намного меньше, чем Starship и Super Heavy, первый можно повторно использовать только частично, поскольку он требует весомых ремонтных работ после возвращения на Землю, а ступени Falcon 9 довольно сложны сами по себе. С другой стороны, Starship, по сути, должен выступать в роли полностью многоразовой первой ступени Falcon 9, космического корабля Dragon 2 и обтекателя, что делает его гораздо более сложным, но потенциально гораздо более многоразовым.
В некоторой степени Super Heavy должна быть механически проще, чем ступени Falcon (без разворачиваемых опор или плавников; без структурных соединений из композитного металла; без специальных маневровых двигателей), а её кислород-метановые двигатели Raptor должны быть проще в повторном использовании, чем используемые на ракетах семейства Falcon агрегаты Merlin. Проще говоря, существуют прецеденты, созданные ракетами семейства Falcon и коcмическим кораблями Space Shuttle, которые свидетельствуют о том, что SpaceX сможет решить половину уравнения, связанного с возможностью повторного использования.
А как насчёт заправки?
Однако другая половина этого уравнения совершенно иная. Итог официальных обсуждений орбитальной дозаправки в SpaceX можно подытожить в предложении, дословно включённом в презентации генерального директора Starship Илона Маска в 2017, 2018 и 2019 годах: «Топливо переливается за счёт небольшого ускорения с использованием двигателей системы ориентации».

Изображение: SpaceX
На первый взгляд, эта простая фраза мало что говорит. Тем не менее, с некоторым скепсисом, намёками на то, что генеральный директор компании сказал (и чего не сказал), и в контексте истории исследований процессов переливания топлива на орбите, можно нарисовать довольно подробную картину точных механизмов, которые SpaceX, вероятно, будет использовать для дозаправки Starship в космосе. Краеугольным камнем, по иронии судьбы, является статья 2006 года, написанная семью сотрудниками Lockheed Martin и инженером NASA, озаглавленная «Контролируемое переливание криогенного топлива». Помимо очевидных следствий только из названия, статья фокусируется на том, что, по мнению авторов, является простейшим возможным путём к орбитальной заправке большими объёмами топлива.
В условиях микрогравитации на орбите топливо внутри баков космического корабля очень хорошо отделяется от конструкции. Если космический корабль применяет тягу, это топливо будет оставаться неподвижным, пока не ударится о стенки резервуара – первый закон Ньютона (в его исторической формулировке), согласно которому неподвижные объекты стремятся оставаться в покое. Если, скажем, космический корабль толкается в одном направлении и открывает люк или клапан топливного бака в направлении противоположном, топливо внутри него (пытаясь оставаться в покое) естественным образом вылетает через это отверстие. Таким образом, если космический корабль нуждается в дозаправке, баки корабля и танкера должны быть соединены и открыты, а танкер должен разогнаться от принимающего корабля. Таким образом, топливо из баков танкера будет эффективно выталкиваться в корабль, «пытающийся» оставаться в покое.
Принципы, лежащие в основе такого метода заправки, довольно просты и интуитивно понятны. Ключевой вопрос заключается в том, какое ускорение требуется для этого процесса и насколько дорого оно обходится. Согласно статье Куттера и других, опубликованной в 2006 году, ответ удивителен: если предположить, что пара космических аппаратов массой 100 метрических тонн ускоряется со значением 0,0001 G (одна десятитысячная гравитации Земли), то для переноса топлива, им потребуется всего 45 килограмм водорода и кислорода в час для поддержания этого ускорения.


Изображения: SpaceX
В самом экстремальном гипотетическом сценарии дозаправки (то есть полностью заполненный танкер заправляет корабль с полным грузовым отсеком), два состыкованных корабля Starship будут весить около 1600 тонн, а ускорение в «миллиG», о котором SpaceX неоднократно упоминала в слайдах презентации, будет в десять раз больше, чем максимальное ускорение, проанализированное Куттером с коллегами. Тем не менее, согласно их статье, затраты топлива линейно коррелируют как с требуемым ускорением, так и с массой всей системы. Грубо говоря, это означает, что движущийся Starship теоретически будет потреблять чуть более 7 тонн (полпроцента) метана и кислорода в час для поддержания требуемого SpaceX ускорения.
При наличии достаточно больших труб (порядка 20-50 сантиметров), соединяющих баки каждого корабля, у SpaceX не должно возникнуть проблем с переливанием более 1000 тонн топлива за несколько часов. В конечном итоге это означает, что заправка даже в масштабе Starship должна облагаться «налогом» на производительность в размере не более 20-50 тонн топлива за дозаправку. Все заправки, проходящие по наихудшему сценарию (1600 тонн), также должны быть значительно более эффективными. В целом, это означает, что полная дозаправка находящегося на орбите Starship примерно 1200 тоннами топлива (требующая от 8 до более 14 запусков танкеров) должна быть на удивление эффективной. При этом, возможно, 80 или более процентов запущенного топлива останется пригодным для использования по завершению процесса.


Изображения: NASASpaceflight – bocachicagal
Далее Куттер и коллеги отмечают, что величина необходимого ускорения настолько мала, что гипотетический космический корабль потенциально мог бы использовать для этого вентиляционные отверстия для стравливания газа из незаполненного объёма бака. А это значит, что специально разработанные двигатели для переливания могут даже не понадобиться. Случайно или нет, SpaceX (или генеральный директор Илон Маск) недавно решили использовать вентиляционные отверстия для стравливания газа с целью замены двигателей системы ориентации на первой ступени Starship – Super Heavy. Если SpaceX применит это и к самому кораблю, то, вполне возможно, что комбинация криогенного топлива, естественно испаряющегося в газ при нагревании, и вентиляционных отверстий, используемых для сброса избыточного давления, сможет создать достаточную тягу для переливания больших объёмов топлива.
И последний штрих, но не менее важный: описанное более полутора десятилетий назад единственное технологическое препятствие, которое Куттер и коллеги предвидели для заправки большими объёмами топлива, было связано даже не с дозаправкой как таковой, а, скорее, с возможностью автономного сближения и стыковки на орбите.
В 2006 году, когда Россия уже успешно использовала технологию автоматической стыковки и сближения на своих космических кораблях «Союз» и «Прогресс», США находились в догоняющих. Но за последние девять лет космические корабли серии Dragon проводили автоматическое сближение с МКС 27 раз, а за последние два года им удалось совершить девять успешных автономных стыковок со станцией.

Фото: NASASpaceflight — bocachicagal
Несмотря на то, что SpaceX и её руководители никогда не детализировали свой подход к дозаправке Starship в космосе, существует чёткий путь, установленный десятилетиями исследований NASA и отрасли. То немногое, что доступно, говорит о том, что это тот же путь, который выбрала SpaceX. В конечном счёте, ключевой вывод из этого исследования и очевидного использования его в SpaceX должен заключаться в следующем: несмотря на то, что этот процесс является относительно неэффективным, SpaceX эффективно решила последнее оставшееся техническое препятствие для переливания топлива и будет иметь возможность легко дозаправлять Starship на орбите практически без серьёзной разработки технологии.
Велика вероятность того, что будут обнаружены незначительные или умеренные проблемы, которые необходимо будет решить, когда SpaceX начнёт тестировать дозаправку на орбите. Но, что очень важно, нет очевидных препятствий, стоящих перед SpaceX в начале этих лётных испытаний. Помимо очевидного (подготовка новой ракеты к её первым лётным испытаниям), единственная серьёзная проблема с дозаправкой, которую, возможно, необходимо будет решить SpaceX – это соединения трубопроводов и стыковочный механизм, которые позволят переливать топливо. Компании также необходимо будет выбрать место для этих портов / механизма стыковки и решить, следует ли внедрять двигатели для стравливания газа (двигатели на холодном газе, вроде тех, что у ракет серии Falcon и текущих прототипах Starship) или более эффективные двигатели на горячем газе, созданные на основе Raptor. В конце концов, всё это решаемые проблемы и вопросы сложной, но рутинной системной инженерии, в которой SpaceX является экспертом.
Это перевод статьи SpaceX’s path to refueling Starships in space is clearer than it seems
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Не совсем верно. Корабль НАСА садился полностью на планету, а вот спускаемый аппарат и марсоход это Гелиос.
Майбутня важка індустрія в космосі буде поєднанням майже всіх традиційних технологій обробки матеріалів, зі значною перевагою АТ.…
> Спутник без антенны, огромная антенна печатается принтером. Не вижу большой проблемы «подселить» туда второй принтер если…
> Но из того что я вижу в статье, за обвесом из слов- речь идёт о проверке…
Вот именно! Люди часто не понимают что себестоимость и рыночная цена это мало связаны вещи.
Уши в заголовке торчат от автора с АЦ. Нет сил признать в целом удачный полет. Будем посмотреть…
роzzкосмос йде нахуй! після перемоги України побачимо чи хто ще буде спроможний в рф працювати для мирного…
> 3D-принтер — это лишь ничтожный довесок к дорогостоящему спутнику. Но выход из строя принтера уничтожает весь…
"Интересные" рассуждения приводятся в статье. Что мол Маск обещал стоимость полётов "Фалкон 9" - $10 млн., а…
lol Причем в статье с первых слов виден западный стиль журналистики
Мертвое море как бы :) Именно там израильская авиация обнаружила этот баг :) В СССР была лихая…
Ну тоді нехай машину часу розробляють з відкатом до 20.02.2014
Пекло!
Тоже может быть. Но из того что я вижу в статье, за обвесом из слов- речь идёт…
Здорово, что у вас есть инсайд из Митсубиши.
Да ужж))), жизнь странная штука))). :)
> Спасибо, не знал за вторую часть. Так мы же как раз в комментариях к ней самой…
Как ни странно, - 0,3 отличается от 20 в самом деле на два порядка. А не в…
Как то ходила еще одна байка, связанная с полетом на высоте, ниже уровня моря. Оказывается, такие места…
Спасибо, не знал за вторую часть. В первой Маск очень коротко и без деталей, не охотно, говорил…
Да, в 24. Во втором видео Маск как раз и говорит, что по габаритам Starlink 2.0 не…
Очень может быть, что их эти вопросы не интересуют принципиально, т.к. цель создания реально применяемой в космосе…
Так никто ничего подобного делать не планирует...
> Насколько я вижу, здесь речь идет не о самой антенне, а о концепте — печати такой…
Смотрел Тима Додда в гостях у Маска, там в каком то SN - не есть что-то типа…